Measuring Confidence of Assurance Cases in Safety-Critical Domains

Date

2020-01-07

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

Evaluation of assurance cases typically requires certifiers’ domain knowledge and experience, and, as such, most software certification has been conducted manually. Given the advancement in uncertainty theories and software traceability, we envision that these technologies can synergistically be combined and leveraged to offer some degree of automation to improve the certifiers’ capability to perform software certification. To this end, we present DS4AC, a novel confidence calculation framework that 1) applies the Dempster-Shafer theory to calculate the confidence between a parent claim and its children claims; and 2) uses the vector space model to evaluate the confidence for the evidence items using traceability information. We illustrate our approach on two different applications, where safety is the key property of interest for both systems. In both cases, we use the Goal Structuring Notation to represent the respective assurance cases and provide proof of concept results that demonstrate the DS4AC framework can automate portions of the evaluation of assurance cases, thereby reducing the burden of manual certification process.

Description

Keywords

Cybersecurity and Software Assurance, dempster-shafer theory, software certification, software traceability, vector space model (vsm)

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 53rd Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.