Comparing Methods for Mitigating Gender Bias in Word Embedding
Files
Date
2023-01-03
Authors
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
722
Ending Page
Alternative Title
Abstract
Word embedding captures the semantic and syntactic meaning of words into dense vectors. It contains biases learning from data that include constructs, cultural stereotypes, and inequalities of the society. Many methods for removing bias in traditional word embedding have been proposed. In this study we use the original GloVe word embedding and perform a comparison among debiasing methods built on top of GloVe in order to determine which methods perform the best removing bias. We have defined half-sibling regression, repulsion attraction neutralization GloVe method and compared it with gender-preserving, gender-neutral GloVe method and other debiased methods. According to our results, no methods outperform in all the analyses and completely remove gender information from gender neutral words. Furthermore, all the debiasing methods perform better than the original GloVe.
Description
Keywords
Accountability, Evaluation, and Obscurity of AI Algorithms, gender bias, glove, natural language processing, word embedding
Citation
Extent
10
Format
Geographic Location
Time Period
Related To
Proceedings of the 56th Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.