You are What You Say: The Influence of Company Tweets on Its Stock Performance
Files
Date
2019-01-08
Authors
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
This paper investigates the relationship between Twitter metrics and stock price performance of a company. The objective of this research is to contribute to the area of research that seeks to uncover the business value of social media platforms. Building on prior research, this paper identifies two categories of metrics that have been used to examine the relationship between Twitter metrics and stock performance of a company, namely traffic and motivation. While traffic is measured as volume of tweets, motivation is measured from two perspectives; polarity (positive, neutral, and negative) and emotion (positive emotion and negative emotion). Unstructured data from Twitter and Yahoo finance Website about Amazon was gathered to test the study hypothesis. A combination of machine learning techniques for text analytics and hierarchical regression analysis was used to analyze the data. Results indicate that emotional motivation expressed in tweets sent out by a company positively influences the company’s stock performance.
Description
Keywords
Machine Learning and Network Analytics in Finance, Decision Analytics, Mobile Services, and Service Science, emotion, organizational performance, polarity, sentiments, stock prices
Citation
Extent
9 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 52nd Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.