Integration of Computer Vision with Analogical Reasoning for Characterizing Unknowns

Date

2023-01-03

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

960

Ending Page

Alternative Title

Abstract

Current state-of-the-art artificial intelligence struggles with accurate interpretation of out-of-library (OOL) objects. One method proposed remedy is analogical reasoning (AR), which utilizes abductive reasoning to draw inferences on an unfamiliar scenario given knowledge about a similar familiar scenario. Currently, applications of visual AR gravitate toward analogy-formatted image problems rather than to computer vision data sets. The Image Recognition Through Analogical Reasoning Algorithm (IRTARA) approach described herein shows how AR can be leveraged to improve computer vision in OOL situations. IRTARA produces a word-based term frequency list that characterizes the OOL object of interest. To evaluate the quality of the results of IRTARA, both quantitative and qualitative assessments are used, including a baseline to compare the automated methods with human-generated results. Fifteen OOL objects were tested using IRTARA, which showed consistent results across all three evaluation methods on the objects that performed exceptionally well or poorly overall.

Description

Keywords

Data, Text, and Web Mining for Business Analytics, analogical reasoning, analogy, artificial intelligence, natural language processing, text mining

Citation

Extent

10

Format

Geographic Location

Time Period

Related To

Proceedings of the 56th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.