Development of a Machine Learning Based Algorithm To Accurately Detect Schizophrenia based on One-minute EEG Recordings

Date

2020-01-07

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

While diagnosing schizophrenia by physicians based on patients' history and their overall mental health is inaccurate, we report on promising results using a novel, fast and reliable machine learning approach based on electroencephalography (EEG) recordings. We show that a fine granular division of EEG spectra in combination with the Random Forest classifier allows a distinction to be made between paranoid schizophrenic (ICD-10 F20.0) and non-schizophrenic persons with a very good balanced accuracy of 96.77 percent. We evaluate our approach on EEG data from an open neurological and psychiatric repository containing 499 one-minute recordings of n=28 participants (14 paranoid schizophrenic and 14 healthy controls). Since the fact that neither diagnostic tests nor biomarkers are available yet to diagnose paranoid schizophrenia, our approach paves the way to a quick and reliable diagnosis with a high accuracy. Furthermore, interesting insights about the most predictive subbands were gained by analyzing the electroencephalographic spectrum up to 100 Hz.

Description

Keywords

Big Data on Healthcare Application, electroencephalography, machine learning, random forest, schizophrenia, spectral analysis

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 53rd Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.