Architectural Tactics for Energy Efficiency: Review of the Literature and Research Roadmap

Date
2021-01-05
Authors
Paradis, Carlos
Kazman, Rick
Tamburri, Damian Andrew
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
7197
Ending Page
Alternative Title
Abstract
The energy consequences of software are rapidly growing: at the high-end, server farms consume enormous amounts of energy; at the low-end there is ever-increasing emphasis on battery-powered mobile and Internet-of-Things (IoT) devices with equally increasing complex usage scenarios. Conversely, there has been little attention to how software architectures can be designed for energy efficiency. While other software qualities—--think of performance or availability--—have been extensively studied, there is little research on how to reason about energy-consumption as a first-class citizen. We provide a basis for reasoning about design decisions for energy efficiency by deriving a kit of reusable architectural tactics derived from literature. We use the well-known open-search and snowballing methodologies to attain primary studies, and subsequently used thematic coding of such studies to identify recurrences and commonalities among the design strategies presented. The result of this process is a set of 10 architectural tactics for energy efficiency. These tactics provide a rational basis for architectural design and analysis for energy efficiency.
Description
Keywords
Software Development for Mobile Devices, the Internet-of-Things, and Cyber-Physical Systems, energy awareness, energy efficiency, power consumption, sustainable software architectures
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 54th Hawaii International Conference on System Sciences
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.