Anti-Inflammatory Effects of Momordica charantia (Bitter Melon) in Adipose Tissue of Mice Fed a High-Fat Diet

dc.contributor.advisor Nerurkar, Pratibha en_US
dc.contributor.author Soares, Natasha en_US
dc.contributor.department Bioengineering en_US
dc.date.accessioned 2014-09-26T20:00:23Z
dc.date.available 2014-09-26T20:00:23Z
dc.date.issued 2014-09-26 en_US
dc.description.abstract Alternative therapies are of interest due to increasing incidences of chronic low-grade inflammatory diseases such as obesity. Momordica charantia (bitter melon, BM), has been demonstrated to reduce total body and adipose tissue weights in mice fed a high-fat diet (HFD). During obesity, elevated levels of monocyte chemo attractant protein-1 (MCP-1) recruit macrophages to infiltrate adipose tissues. Infiltrated macrophages mediate low-grade systemic and tissue-specific inflammation. We hypothesized that BM would reduce HFD-associated inflammation due to decreased plasma levels of MCP-1 found in mice fed HFD+BM. For 16 weeks, C57BL/6 male mice were treated with 1) control diet (4.8% fat), 2) control diet + BM (1.5% lyophilized powder, w/w), 3) HFD (58% fat), and 4) HFD + BM. Several inflammatory gene expressions from visceral adipose tissues were measured by quantitative real-time PCR (qPCR). Results suggest that BM reduced mRNA expression of macrophage infiltration (F4/80 and MCP-1), inflammatory (interleukin-1 beta, IL-1β, nuclear factor-kappaB1, NF-κB1, and toll-like receptor 4, TLR4), and adipose tissue differentiation (peroxisome proliferator-activated receptor gamma, PPARγ) markers. Overall, BM lowered adipose tissue inflammation in HFD-fed mice. Findings from this research could potentially be used to determine molecular targets of BM to alleviate obesity-induced inflammation. Such studies are important as they offer low-cost alternatives for developing countries and lower health-care costs for standard long-term care in developed countries. [Public Health Service grants (R21AT003719) National Center for Complementary and Alternative Medicine, (G12 RR003061) Research Centers in Minority Institutions, and (2T34GM007684) Minority Access to Research Careers Program, NIH.] en_US
dc.format.extent x, 42 pages en_US
dc.identifier.uri http://hdl.handle.net/10125/33656
dc.publisher University of Hawaii at Manoa en_US
dc.rights All UHM Honors Projects are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission from the copyright owner. en_US
dc.title Anti-Inflammatory Effects of Momordica charantia (Bitter Melon) in Adipose Tissue of Mice Fed a High-Fat Diet en_US
dc.type Term Project en_US
dc.type.dcmi Text en_US
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Soares_Natasha_Senior Honors Thesis.pdf
Size:
730.37 KB
Format:
Adobe Portable Document Format
Description: