Efficient Mobile Edge Computing for Mobile Internet of Thing in 5G Networks
Files
Date
2020-01-07
Authors
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
We study the off-line efficient mobile edge computing (EMEC) problem for a joint computing to process a task both locally and remotely with the objective of minimizing the finishing time. When computing remotely, the time will include the communication and computing time. We first describe the time model, formulate EMEC, prove NP-completeness of EMEC, and show the lower bound. We then provide an integer linear programming (ILP) based algorithm to achieve the optimal solution and give results for small-scale cases. A fully polynomial-time approximation scheme (FPTAS), named Approximation Partition (AP), is provided through converting ILP to the subset sum problem. Numerical results show that both the total data length and the movement have great impact on the time for mobile edge computing. Numerical results also demonstrate that our AP algorithm obtain the finishing time, which is close to the optimal solution.
Description
Keywords
Cellular and Wireless Networks, 5g networks, fully polynomial-time scheme, integer linear programming, internet of things, mobile edge computing
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 53rd Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Collections
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.