Empirical Research on the Impact of Personalized Recommendation Diversity

Date

2019-01-08

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

Personalized recommendation has important implications in raising online shopping efficiency and increasing product sales. There has been wide interest in finding ways to provide more efficient personalized recommendations. Most existing studies focus on how to improve the accuracy of the recommendation algorithms, or are more concerned on ways to increase consumer satisfaction. Unlike these studies, our study focuses on the process of decision-making, using long tail theory as a basis, to reveal the mechanisms involved in consumers’ adoption of recommendations. This paper analyzes the effect of personalized recommendations from two angles: product sales and ratings, and tries to point out differences in consumer preferences between mainstream products and niche products, high rating products and low rating products, search products and experience products. The study verifies that consumers demand diversity in the recommended content, and also provides suggestions on how to better plan and operate a personalized recommendation system.

Description

Keywords

Decision Support for Smart Cities, Decision Analytics, Mobile Services, and Service Science, Personalized recommendation, Product ratings, Product sales, Long tail, Diversity

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 52nd Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.