A Practical and Empirical Comparison of Three Topic Modeling Methods Using a COVID-19 Corpus: LSA, LDA, and Top2Vec

Date

2023-01-03

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

930

Ending Page

Alternative Title

Abstract

This study was prepared as a practical guide for researchers interested in using topic modeling methodologies. This study is specially designed for those with difficulty determining which methodology to use. Many topic modeling methods have been developed since the 1980s namely, latent semantic indexing or analysis (LSI/LSA), probabilistic LSI/LSA (pLSI/pLSA), naïve Bayes, the Author-Recipient-Topic (ART), Latent Dirichlet Allocation (LDA), Topic Over Time (TOT), Dynamic Topic Models (DTM), Word2Vec, Top2Vec, and \variation and combination of these techniques. Researchers from disciplines other than computer science may find it challenging to select a topic modeling methodology. We compared a recently developed topic modeling algorithm Top2Vec with two of the most conventional and frequently-used methodologiesLSA and LDA. As a study sample, we used a corpus of 65,292 COVID-19-focused abstracts. Among the 11 topics we identified in each methodology, we found high levels of correlation between LDA and Top2Vec results, followed by LSA and LDA and Top2Vec and LSA. We also provided information on computational resources we used to perform the analyses and provided practical guidelines and recommendations for researchers.

Description

Keywords

Data, Text, and Web Mining for Business Analytics, covid-19, lda, lsa, top2vec, topic modeling

Citation

Extent

10

Format

Geographic Location

Time Period

Related To

Proceedings of the 56th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.