A Practical and Empirical Comparison of Three Topic Modeling Methods Using a COVID-19 Corpus: LSA, LDA, and Top2Vec
Files
Date
2023-01-03
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
930
Ending Page
Alternative Title
Abstract
This study was prepared as a practical guide for researchers interested in using topic modeling methodologies. This study is specially designed for those with difficulty determining which methodology to use. Many topic modeling methods have been developed since the 1980s namely, latent semantic indexing or analysis (LSI/LSA), probabilistic LSI/LSA (pLSI/pLSA), naïve Bayes, the Author-Recipient-Topic (ART), Latent Dirichlet Allocation (LDA), Topic Over Time (TOT), Dynamic Topic Models (DTM), Word2Vec, Top2Vec, and \variation and combination of these techniques. Researchers from disciplines other than computer science may find it challenging to select a topic modeling methodology. We compared a recently developed topic modeling algorithm Top2Vec with two of the most conventional and frequently-used methodologiesLSA and LDA. As a study sample, we used a corpus of 65,292 COVID-19-focused abstracts. Among the 11 topics we identified in each methodology, we found high levels of correlation between LDA and Top2Vec results, followed by LSA and LDA and Top2Vec and LSA. We also provided information on computational resources we used to perform the analyses and provided practical guidelines and recommendations for researchers.
Description
Keywords
Data, Text, and Web Mining for Business Analytics, covid-19, lda, lsa, top2vec, topic modeling
Citation
Extent
10
Format
Geographic Location
Time Period
Related To
Proceedings of the 56th Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.