Formative Evaluation of Data-Driven Business Models – The Data Insight Generator
Files
Date
2020-01-07
Authors
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
New technological developments such as Big Data or, the Internet of Things lead to exponentially increasing amounts of data created and stored by organizations. As a consequence, new data-driven business models (DDBMs) appear. These business models have special characteristics which need to be included in the business model development process. Thus, different methods and tools have emerged to support the development of DDBMs. One of these is the Data Insight Generator (DIG) which seeks to combine the key resource and value proposition of a DDBM. This paper comprises the application of the thinking-aloud method for a formative evaluation of the DIG. The contribution of this paper is twofold. First, the usability of the DIG is tested and implications for further development are derived. Second, the paper provides empirically-based insights into development of DDBM that facilitate the future development of such business models.
Description
Keywords
Developing Visual Collaborative Tools, business model design, data-driven business models, design science research, evaluation, thinking aloud
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 53rd Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Collections
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.