Machine Learning-Based Android Malware Detection Using Manifest Permissions
Files
Date
2021-01-05
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
6976
Ending Page
Alternative Title
Abstract
The Android operating system is currently the most prevalent mobile device operating system holding roughly 54 percent of the total global market share. Due to Android’s substantial presence, it has gained the attention of those with malicious intent, namely, malware authors. As such, there exists a need for validating and improving current malware detection techniques. Automated detection methods such as anti-virus programs are critical in protecting the wide variety of Android-powered mobile devices on the market. This research investigates effectiveness of four different machine learning algorithms in conjunction with features selected from Android manifest file permissions to classify applications as malicious or benign. Case study results, on a test set consisting of 5,243 samples, produce accuracy, recall, and precision rates above 80%. Of the considered algorithms (Random Forest, Support Vector Machine, Gaussian Naïve Bayes, and K-Means), Random Forest performed the best with 82.5% precision and 81.5% accuracy.
Description
Keywords
Cybersecurity and Software Assurance, android, anti-virus, apk manifest, malware detection, static analysis
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 54th Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Collections
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.