Visualization of POI Category on the Dynamic Rasterized Map Tiles from Geo-Tagged Social Media (Twitter) with SZ-GAT

Date

2023-01-03

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

2210

Ending Page

Alternative Title

Abstract

Spatial zooming graph attention networks (SZ-GAT) is an emerging framework to improve the quality of recommended places visualization on the map. With the advent of location sharing on social networks via mobile devices, the geographic characteristics of the user's points of interest (POIs) contain the visit history, map check-in positions, recommended places, and route plans. In the context of user-preferred POI prediction with map zooming SZ-GAT framework, we propose a visualization for raster category exploration that uses tweet user visit history to represent the POI visit popularity of the raster units. We concentrate on the performance of the POI data visualized map layer zooming process and our results show that the SZ-GAT framework has a better performance of raster category regression with the baselines. Raster category prediction will be used for urban area division, dynamic category feature extraction with user visit history, and government policy-making based on user behaviors of map tiles. This study promotes the progress of deep learning and data mining in the field of human geographic information.

Description

Keywords

Data Analytics, Data Mining, and Machine Learning for Social Media, graph neural network, map rasterization, map zooming prediction, user preference

Citation

Extent

10

Format

Geographic Location

Time Period

Related To

Proceedings of the 56th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.