Divergence Based Non-Negative Matrix Factorization for top-N Recommendations
dc.contributor.author | Haque, Md. Enamul | |
dc.contributor.author | Zobaed, SM | |
dc.contributor.author | Tozal, Mehmet Engin | |
dc.contributor.author | Raghavan, Vijay | |
dc.date.accessioned | 2019-01-02T23:41:36Z | |
dc.date.available | 2019-01-02T23:41:36Z | |
dc.date.issued | 2019-01-08 | |
dc.format.extent | 10 pages | |
dc.identifier.doi | 10.24251/HICSS.2019.055 | |
dc.identifier.isbn | 978-0-9981331-2-6 | |
dc.identifier.uri | http://hdl.handle.net/10125/59485 | |
dc.language.iso | eng | |
dc.relation.ispartof | Proceedings of the 52nd Hawaii International Conference on System Sciences | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | Data Science and Digital Collaborations | |
dc.subject | Collaboration Systems and Technologies | |
dc.subject | K-L divergence | |
dc.subject | Matrix factorization | |
dc.subject | Top N recommendation | |
dc.title | Divergence Based Non-Negative Matrix Factorization for top-N Recommendations | |
dc.type | Conference Paper | |
dc.type.dcmi | Text |
Files
Original bundle
1 - 1 of 1