Leveraging the Potentials of Dedicated Collaborative Interactive Learning: Conceptual Foundations to Overcome Uncertainty by Human-Machine Collaboration

Date

2018-01-03

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

When a learning system learns from data that was previously assigned to categories, we say that the learning system learns in a supervised way. By "supervised", we mean that a higher entity, for example a human, has arranged the data into categories. Fully categorizing the data is cost intensive and time consuming. Moreover, the categories (labels) provided by humans might be subject to uncertainty, as humans are prone to error. This is where dedicate collaborative interactive learning (D-CIL) comes together: The learning system can decide from which data it learns, copes with uncertainty regarding the categories, and does not require a fully labeled dataset. Against this background, we create the foundations of two central challenges in this early development stage of D-CIL: task complexity and uncertainty. We present an approach to "crowdsourcing traffic sign labels with self-assessment" that will support leveraging the potentials of D-CIL.

Description

Keywords

Decision Support for Complex Networks, Active Learning, Crowdsourcing, Collaboration Engineering, Dedicated Collaborative Learning, Human-Machine Collaboration

Citation

Extent

9 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 51st Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.