Exploring a Direct Policy Search Framework for Multiobjective Optimization of a Microgrid Energy Management System

Date

2020-01-07

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

With an increasing focus on integration of distributed energy resources, it is likely that microgrids will proliferate globally. Microgrid systems will be expected to achieve multiple stakeholder objectives, motivating the study of microgrid operations using a multiobjective framework. A multiobjective perspective has the potential balance the trade-offs implicit to efficient use of available resources. To address this challenge, this paper proposes a simulation based parametric approach for multiobjective optimization for microgrid energy management. The methodology generates a Pareto-approximate set of control policies, to provide a microgrid controller with diverse alternative strategies for utilizing resources to balance competing objectives. The policies also help to illustrate the complex relationships between the objectives, and the consequences of compromises across performance. The methodology is implemented on a test microgrid and the potential benefits are demonstrated with a set of illustrative case studies.

Description

Keywords

Policy, Markets, and Computation, direct policy search, energy management, microgrids, multiobjective optimization

Citation

Extent

11 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 53rd Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.