An Adversarial Training Based Machine Learning Approach to Malware Classification under Adversarial Conditions
Files
Date
2021-01-05
Authors
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
827
Ending Page
Alternative Title
Abstract
The use of machine learning (ML) has become an established practice in the realm of malware classification and other areas within cybersecurity. Characteristic of the contemporary realm of intelligent malware classification is the threat of adversarial ML. Adversaries are looking to target the underlying data and/or models responsible for the functionality of malware classification to map its behavior or corrupt its functionality. The ends of such adversaries are bypassing the cybersecurity measures and increasing malware effectiveness. We develop an adversarial training based ML approach for malware classification under adversarial conditions that leverages a stacking ensemble method, which compares the performance of 10 base ML models when adversarially trained on three data sets of varying data perturbation schemes. This comparison ultimately reveals the best performing model per data set, which includes random forest, bagging and gradient boosting. Experimentation also includes stacking a mixture of ML models in both the first and second levels in the stack. A first level stack across all 10 ML models with a second level support vector machine is top performing. Overall, this work reveals that a malware classifier can be developed to account for potential forms of training data perturbation with minimal effect on performance.
Description
Keywords
Accountability, Evaluation, and Obscurity of AI Algorithms, adversarial training, ai system assurance, cybersecurity, machine learning, malware detection
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 54th Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.