Improving Credit Risk Analysis with Cluster Based Modeling and Threshold Selection

Date

2020-01-07

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

Credit risk has been an integral part of financial industry and is a challenging and difficult risk to manage. The diverse behavior of borrowers adds challenges to the risk analysis. Failing to accurately identify the borrowers' risk can lead to huge investment losses. Credit scoring is a popular and commonly used technique to analyze credit risk. A single credit scoring model may not be capable of generating a common rule to classify borrowers and hence segmented modeling can be applied to create more specific classification rules for achieving higher classification accuracy. In this study segmented modeling is applied with threshold selection for each segment to reduce relative cost of misclassification. The results from the study show that threshold selection based on the segmented modeling can give improvement over a single credit scoring model.

Description

Keywords

Machine Learning and Predictive Analytics in Accounting, Finance and Management, credit risk, credit scoring, relative cost, segmented modeling

Citation

Extent

8 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 53rd Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.