The use of partially observable Markov decision processes to optimally implement moving target defense

Date
2021-01-05
Authors
Mcabee, Ashley
Tummala, Murali
Mceachen, John
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
6986
Ending Page
Alternative Title
Abstract
For moving target defense (MTD) to shift advantage away from cyber attackers, we need techniques which render systems unpredictable but still manageable. We formulate a partially observable Markov decision process (POMDP) which facilitates optimized MTD capable of thwarting cyber attacks without excess overhead. This paper describes POMDP formulation including the use of an absorbing final state and attack penalty scaling factor to abstract defender-defined priorities into the model. An autonomous agent leverages the POMDP to select the optimal defense based on assessed cyber-attack phase. We offer an example formulation wherein attack suppression of greater than 99% and system availability of greater than 94% were maintained even as probability of detection of attack phase dropped to 74%.
Description
Keywords
Cybersecurity and Software Assurance, cybersecurity, markov models, moving target
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 54th Hawaii International Conference on System Sciences
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.