Improving Wildlife Monitoring using a Multi-criteria Cooperative Target Observation Approach

Date

2020-01-07

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

Wildlife Monitoring is very important for maintaining sustainability of environment. In this paper we pose Wildlife Monitoring as Cooperative Target Observation (CTO) problem and propose a Multi Criteria Decision Analysis (MCDA) based algorithm named MCDA-CTO, to maximize the observation of different animal species by Unmanned Aerial Vehicles (UAVs) and to effectively handle multiple target types and the multiple criteria that arise due to targets and environmental factors, during decision making. UAVs have uncertainty in observation of targets which makes it challenging to develop a high-quality monitoring strategy. We therefore develop monitoring techniques that explicitly take actions to improve belief about the true type of targets being observed. In wildlife monitoring, it is often reasonable to assume that the observers may themselves be a subject of observation by unknown adversaries (poachers). Randomizing the observer’s actions can therefore help to make the target observation strategy less predictable. We then provide experimental validation that shows that the techniques we develop provide a higher (true positive/true negative) ratio along with better randomization than state of the art approaches.

Description

Keywords

AI and Sustainability: The Use of AI in Sustainability Initiatives, cooperative target observation, multi criteria decision analysis, wildlife monitoring

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 53rd Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.