Design Foundations for AI Assisted Decision Making: A Self Determination Theory Approach
Files
Date
2021-01-05
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
166
Ending Page
Alternative Title
Abstract
Progress of technology and processing power has enabled the advent of sophisticated technology including Artificial Intelligence (AI) agents. AI agents have penetrated society in many forms including conversation agents or chatbots. As these chatbots have a social component to them, is it critical to evaluate the social aspects of their design and its impact on user outcomes. This study employs Social Determination Theory to examine the effect of the three motivational needs on user interaction outcome variables of a decision-making chatbot. Specifically, this study looks at the influence of relatedness, competency, and autonomy on user satisfaction, engagement, decision efficiency, and decision accuracy. A carefully designed experiment revealed that all three needs are important for user satisfaction and engagement while competency and autonomy is associated with decision accuracy. These findings highlight the importance of considering psychological constructs during AI design. Our findings also offer useful implications for AI designers and organizations that plan on using AI assisted chatbots to improve decision-making efforts.
Description
Keywords
AI and Future of Work, ai, chat bots, decision making, self determination theory
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 54th Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Collections
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.