On Estimation of Equipment Failures in Electric Distribution Systems Using Bayesian Inference

Date

2021-01-05

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

3131

Ending Page

Alternative Title

Abstract

This paper presents a new statistical parametric model to predict the times-to-failure of broad classes of identical devices such as on-load tap changers, switched capacitors, breakers, etc. A two-parameter Weibull distribution with scale parameter given by the inverse power law is employed to model the survivor functions and hazard rates of on-load tap changers. The resulting three-parameter distribution, referred to as IPL-Weibull, is flexible enough to assume right, left, and even symmetrical modal distribution. In this work, we propose an inferential method based on Bayes’ rule to derive the point estimates of model parameters from the past right-censored failure data. Using the Monte Carlo integration technique, it is possible to obtain such parameter estimates with high accuracy.

Description

Keywords

Distributed, Renewable, and Mobile Resources, asset management, bayesian parameter estimation, renewable generation, weibull distribution

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 54th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.