Mining and Predicting Temporal Patterns in the Quality Evolution of Wikipedia Articles

Date

2020-01-07

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

Online open collaboration systems like Wikipedia are complex adaptive systems within which large numbers of individual agents and artifacts interact and co-evolve over time. A key issue in these systems is the quality of the co-created artifacts and the processes through which high-quality artifacts are produced. In this paper, we took a dynamic approach to uncover common patterns in the temporal evolution of 6,057 Wikipedia articles in the domains of roads, films, and battles. Using Dynamic Time Warping, an advanced time-series clustering method, we identified three distinctive growth patterns, namely, stalled, plateaued, and sustained. Multinomial logistic regressions to predict these different clusters suggest that the path that an article follows is determined by both its inherent attributes, such as topic importance, and the contribution and coordination of editors who collaborated on the article. Our results also suggest that different factors matter at different stages of an article’s life cycle.

Description

Keywords

Crowd-based Platforms, dynamics, evolution patterns, online open collaboration, quality, time-series clustering, wikipedia

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 53rd Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.