Asymmetric dynamical behavior of thermochemical plumes and implications for Hawaiian lava composition

Date

2015-02

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

John Wiley & Sons, Inc.

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

The Hawaiian Kea and Loa volcano trends have commonly been interpreted as directly reflecting a compositional zonation within the Hawaiian plume stem, inherited from the lowermost mantle. As this zonation is often associated with variations in mafic material, and as such materials, especially eclogites, impact mantle flow, this study aims to characterize the ascent and melting of bilaterally-zoned thermochemical plumes. Our geodynamic models predict that plumes bearing ≿12% eclogite tend to stagnate as a deep eclogitic pool (DEP) in the mid upper mantle where phase changes lead to a maximum in eclogite excess density. This behavior can explain recent seismic-tomography results, and predicts thermal asymmetry of material rising out of the DEP to feed the hotspot. Thermal asymmetry is caused by the effects of ambient-mantle flow or plume-stem zonation on DEP dynamics, and ultimately boosts peridotite melting on the melting zone’s hotter side. This hotter side is hence less dominated by melting of mafic materials, despite being fed by equally or more such materials than the cooler side. These results suggest that the Kea side of the Hawaiian Plume is equally or more eclogitic than the Loa side, opposite to previous interpretations. Care should thus be taken in mapping geographical variations in lava chemistry into the deep mantle.

Description

Keywords

asymmetric thermochemical plumes, deep eclogitic pool (DEP), geodynamic models, Hawaiian Kea, Hawaiian Loa, mafic materials, mantle flow, peridotite melting, seismic-tomography

Citation

Ballmer, M. D., Ito, G. and Cheng, C. (2015) Asymmetric Dynamical Behavior of Thermochemical Plumes and Implications for Hawaiian Lava Composition, in Hawaiian Volcanoes: From Source to Surface (eds R. Carey, V. Cayol, M. Poland and D. Weis), John Wiley & Sons, Inc, Hoboken, NJ.

Extent

39

Format

Geographic Location

Time Period

Related To

Table of Contents

Rights

Copyright © 2015 American Geophysical Union.

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.