HoneyCode: Automating Deceptive Software Repositories with Deep Generative Models

Date

2021-01-05

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

6945

Ending Page

Alternative Title

Abstract

We propose HoneyCode, an architecture for the generation of synthetic software repositories for cyber deception. The synthetic repositories have the characteristics of real software, including language features, file names and extensions, but contain no real intellectual property. The fake software can be used as a honeypot or form part of a deceptive environment. Existing approaches to software repository generation lack scalability due to reliance on hand-crafted structures for specific languages. Our approach is language agnostic and learns the underlying representations of repository structures, filenames and file content through a novel Tree Recurrent Network (TRN) and two recurrent networks (RNN) respectively. Each stage of the sequential generation process utilises features from prior steps, which increases the honey repository’s authenticity and consistency. Experiments show TRN generates tree samples that reduce degree mean maximal distance (MMD) by 90-92% and depth MMD by 75-86% to a held out test data set in comparison to recent deep graph generators and a baseline random tree generator. In addition, our RNN models generate convincing filenames with authentic syntax and realistic file content.

Description

Keywords

Cyber Operations, Defence, and Forensics, cyber defence, deception, generative models, honeypot, neural networks

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 54th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.