Mitigating Autonomous Vehicle GPS Spoofing Attacks through Scene Text Observations

Date

2023-01-03

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

6706

Ending Page

Alternative Title

Abstract

This paper investigates both from an empirical and a systems-based perspective, how surrounding textual information can be leveraged towards the mitigation of Autonomous Vehicle (AV) and self-driving cars Global Positioning System (GPS) signal spoofing attacks. The paper presents and proposes methods of how AVs and self-driving cars can extract, as they travel along a trajectory, surrounding textual information through machine-learning based Scene Text Recognition (STR). The paper researches and proposes geospatial models which can be applied to the extracted textual information in order to build a text-based geolocation system for the purposes of validating the received GPS signal. The ultimate contribution of the paper is to lay the groundwork towards enhancing the Cybersecurity of the current and future Autonomous Vehicle and self-driving car ecosystem by addressing its Achilles heel, namely insecure and inaccurate geolocation due to GPS spoofing attacks.

Description

Keywords

Cyber Systems: Their Science, Engineering, and Security, autonomous vehicles, cybersecurity, gps spoofing

Citation

Extent

10

Format

Geographic Location

Time Period

Related To

Proceedings of the 56th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.