The Relationship Between Twitter Sentiment and Stock Performance: A Decision Tree Approach

Date

2023-01-03

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

4850

Ending Page

Alternative Title

Abstract

Social media has become a communication tool, but also a valuable database for researchers and practitioners to gather information, share knowledge, as well as express opinions about stock performance. The sentiment embedded in social media content can be analyzed to predict stock performance. Although numerous past studies have attempted to predict stock price movement using social media sentiment, some emerging analytical tools, like existing lexicons, may require further testing and validation in a financial decision making context. In this study, we develop and test predictive models for stock price and trend forecasting. By using a large-scale sample of tweets collected from Twitter, related to four companies, Apple, Google, Microsoft, and Netflix, we propose a novel decision tree approach to stock performance prediction. Based on our findings, we then provide theoretical and practical implications and discuss the directions for future work.

Description

Keywords

Judgement, Big Data-Analytics, and Decision-making, decision tree, sentiment analysis, social media, stock market

Citation

Extent

10

Format

Geographic Location

Time Period

Related To

Proceedings of the 56th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.