What to prioritize? Natural Language Processing for the Development of a Modern Bug Tracking Solution in Hardware Development

Date

2022-01-04

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

Managing large numbers of incoming bug reports and finding the most critical issues in hardware development is time consuming, but crucial in order to reduce development costs. In this paper, we present an approach to predict the time to fix, the risk and the complexity of debugging and resolution of a bug report using different supervised machine learning algorithms namely Random Forest, Naive Bayes, SVM, MLP and XGBoost. Further, we investigate the effect of the application of active learning and we evaluate the impact of different text representation techniques, namely TF-IDF, Word2Vec, Universal Sentence Encoder and XLNet on the model's performance. The evaluation shows that a combination of text embeddings generated through the Universal Sentence Encoder and MLP as classifier outperforms all other methods, and is well suited to predict the risk and complexity of bug tickets.

Description

Keywords

Text Analytics, artificial intelligence, bug triaging, hardware development, machine learning, natural language processing

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 55th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Collections

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.