A Similarity-Based Approach for the All-Time Demand Prediction of New Automotive Spare Parts
dc.contributor.author | Steuer, Daniel | |
dc.contributor.author | Hutterer, Verena | |
dc.contributor.author | Korevaar, Peter | |
dc.contributor.author | Fromm, Hansjoerg | |
dc.date.accessioned | 2017-12-28T00:50:10Z | |
dc.date.available | 2017-12-28T00:50:10Z | |
dc.date.issued | 2018-01-03 | |
dc.format.extent | 8 pages | |
dc.identifier.doi | 10.24251/HICSS.2018.191 | |
dc.identifier.isbn | 978-0-9981331-1-9 | |
dc.identifier.uri | http://hdl.handle.net/10125/50078 | |
dc.language.iso | eng | |
dc.relation.ispartof | Proceedings of the 51st Hawaii International Conference on System Sciences | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | Service Analytics | |
dc.subject | 0 | |
dc.title | A Similarity-Based Approach for the All-Time Demand Prediction of New Automotive Spare Parts | |
dc.type | Conference Paper | |
dc.type.dcmi | Text |
Files
Original bundle
1 - 1 of 1