PanViz 2.0: Intregating AI into Visual analytics to adapt to the novel challenges of COVID-19
Date
2021-01-05
Authors
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
1457
Ending Page
Alternative Title
Abstract
The ongoing and evolving COVID-19 pandemic has resulted in tremendous negative effects on people’s daily lives. It is critical for decision makers such as health care officials and governors to foresee potential impacts and make timely decisions. We present PanViz 2.0, a visual analytics application that combines an epidemic model and AI-driven analytics to infer the best-fit parameters to enable the adaptation to ongoing pandemics at multiple spatial aggregations (nation wide, state level, and county level). Our experiments for predicting the fatality cases in each county of the state of Oklahoma demonstrate the flexibility of our application in adapting to various scenarios and regions.
Description
Keywords
Interactive Visual Analytics and Visualization for Decision Making, pandemic influenza, regression models, time series data, visual analytics
Citation
Extent
9 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 54th Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.