Attack Modeling and Mitigation Strategies for Risk-Based Analysis of Networked Medical Devices
Files
Date
2020-01-07
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
The escalating integration of network-enabled medical devices raises concerns for both practitioners and academics in terms of introducing new vulnerabilities and attack vectors. This prompts the idea that combining medical device data, security vulnerability enumerations, and attack-modeling data into a single database could enable security analysts to proactively identify potential security weaknesses in medical devices and formulate appropriate mitigation and remediation plans. This study introduces a novel extension to a relational database risk assessment framework by using the open-source tool OVAL to capture device states and compare them to security advisories that warn of threats and vulnerabilities, and where threats and vulnerabilities exist provide mitigation recommendations. The contribution of this research is a proof of concept evaluation that demonstrates the integration of OVAL and CAPEC attack patterns for analysis using a database-driven risk assessment framework.
Description
Keywords
Machine Learning and Cyber Threat Intelligence and Analytics, cyber threat, medical devices, risk analysis, threat intelligence, vulnerabilities
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 53rd Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.