Using Natural Language Processing Techniques to Tackle the Construct Identity Problem in Information Systems Research
Files
Date
2020-01-07
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
The growing number of constructs in behavioral research presents a problem to theory integration, since constructs cannot clearly be discriminated from each other. Recently there have been efforts to employ natural language processing techniques to tackle the construct identity problem. This paper compares the performance of the novel word-embedding model GloVe and different document projection methods with a latent semantic analysis (LSA) used in recent literature. The results show that making use of an advantage in document projection that LSA has over GloVe, performance can be improved. Even against this advantage of LSA, GloVe reaches comparable performance, and adjusted word embedding models can make up for this advantage. The proposed approach therefore presents a promising pathway for theory integration in behavioral research.
Description
Keywords
Knowing What We Know: Theory, Meta-analysis, and Review, construct identity fallacy, global vectors for word representation (glove), jingle jangle, latent semantic analysis (lsa), word embeddings
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 53rd Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.