Facts vs. Stories - Assessment and Conventional Signals as Predictors of Freelancers’ Performance in Online Labor Markets
Date
2018-01-03
Authors
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
This paper investigates how freelancers’ use of signals predicts earnings in online labor markets. Extant literature has questioned the usefulness of some assessment signals to evaluate a freelancer’s quality. We find that conventional signals - signals based on non-verifiable information - can be predictors of higher revenue, when they are based on anecdotes of positive past events (self-promotion). However, mere kindness and flattery towards the customer (ingratiation) is negatively associated with a freelancers’ earnings in OLM. Moreover, we find evidence that the number of tests performed on the platform is significantly associated with higher earnings - with each test that is added to the profile a freelancer-˜s revenue increases by 4.1 %. We base our analysis on a sample of 1065 freelancers using objective financial earnings data, independent codings and survey data.
Description
Keywords
Crowd-based Platforms, Online Labor Markets, Freelancer, Conventional Signals, Assessment Signals, Signaling Theory
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 51st Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Collections
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.