Facts vs. Stories - Assessment and Conventional Signals as Predictors of Freelancers’ Performance in Online Labor Markets

Date

2018-01-03

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

This paper investigates how freelancers’ use of signals predicts earnings in online labor markets. Extant literature has questioned the usefulness of some assessment signals to evaluate a freelancer’s quality. We find that conventional signals - signals based on non-verifiable information - can be predictors of higher revenue, when they are based on anecdotes of positive past events (self-promotion). However, mere kindness and flattery towards the customer (ingratiation) is negatively associated with a freelancers’ earnings in OLM. Moreover, we find evidence that the number of tests performed on the platform is significantly associated with higher earnings - with each test that is added to the profile a freelancer-˜s revenue increases by 4.1 %. We base our analysis on a sample of 1065 freelancers using objective financial earnings data, independent codings and survey data.

Description

Keywords

Crowd-based Platforms, Online Labor Markets, Freelancer, Conventional Signals, Assessment Signals, Signaling Theory

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 51st Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.