Improving End-Use Load Modeling Using Machine Learning and Smart Meter Data

Date

2020-01-07

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

An accurate representation of the voltage-dependent, time-varying energy consumption of end-use electric loads is essential for the operation of modern distribution automation (DA) schemes. Volt-var optimization (VVO), a DA scheme which can decrease energy consumption and peak demand, often leverages electric network models and power flow results to inform control decisions, making it sensitive to errors in load models. End-use load modeling can be improved with additional measurements from advanced metering infrastructure (AMI). This paper presents two novel machine learning algorithms for creating data-driven, time-varying load models for use with DA technologies such as VVO. The first algorithm uses AMI data, k-means clustering, and least-squares optimization to create predictive load models for individual electric customers. The second algorithm uses deep learning (via a convolution-based recurrent neural network) to incorporate additional data and increase model accuracy. The improved accuracy of the load models for both algorithms is validated through simulation.

Description

Keywords

Monitoring, Control, and Protection, load flow, load modeling, machine learning, power distribution, power system modeling

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 53rd Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.