Helping Data Science Students Develop Task Modularity
Files
Date
2019-01-08
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
This paper explores the skills needed to be a data scientist. Specifically, we report on a mixed method study of a project-based data science class, where we evaluated student effectiveness with respect to dividing a project into appropriately sized modular tasks, which we termed task modularity. Our results suggest that while data science students can appreciate the value of task modularity, they struggle to achieve effective task modularity. As a first step, based our study, we identified six task decomposition best practices. However, these best practices do not fully address this gap of how to enable data science students to effectively use task modularity. We note that while computer science/information system programs typically teach modularity (e.g., the decomposition process and abstraction), and there remains a need identify a corresponding model to that used for computer science / information system students, to teach modularity to data science students.
Description
Keywords
Big Data and Analytics: Pathways to Maturity, Decision Analytics, Mobile Services, and Service Science, Data Science, Education, Modularity
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 52nd Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Collections
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.