Honing in on the climate signal in seafloor topography

Date
2022
Authors
Garrett Ito
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
The corrugated surface of the seafloor expresses the most areally extensive landform on Earth, known as “abyssal hills”, inherited from when the oceanic crust was created at a midocean ridge spreading center (1, 2) (Fig. 1). The main process is the shifting and rotation of adjacent blocks of crust relative to one another along fault zones predominantly during periods of low magmatic activity, interspersed between times of robust magmatism and the emplacement new crust (1, 3). In the presence of the steady far-field tug of plate tectonic forces, this interplay between faulting and magmatism depends on processes influencing the time dependence of magma generation, storage, and delivery to the surface (4, 5). In PNAS, Huybers et al. (6) argue that one such process originates with the fall and rise of sea level during glacial–interglacial climate cycles.
Description
Commentary
Keywords
Citation
Ito, G. (2022) Honing in on the climate signal in seafloor topography, Proc. Natl. Acad. Sci, 119 (32) e2209199, https://www.pnas.org/doi/full/10.1073/pnas.2209199119
Extent
Format
Geographic Location
Time Period
Related To
Table of Contents
Rights
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.