What Can Online Doctor Reviews Tell Us? A Deep Learning Assisted Study of Telehealth Service

Date

2023-01-03

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

2130

Ending Page

Alternative Title

Abstract

The present study develops a novel deep learning method which assists text mining of online doctor reviews to extract underlying sentiment scores. Those scores can be used to estimate a healthcare service quality model to investigate how the online doctor reviews impact the online doctor consultation demand. Based on the data from the largest online health platforms in China, our model results show that the underlying sentiment scores have statistically significant impacts on the demand of online doctor consultation. Theoretically, the present study constructs an innovative deep learning algorithm with a better performance than four widely used text mining methods, which can be applied to text mining of many online forums or social media texts. Empirically, our model results show what factors impact the health service quality and online doctor consultation demand, and following those factors, healthcare professionals can improve their service.

Description

Keywords

Data Analytics, Data Mining, and Machine Learning for Social Media, deep learning, online doctor consultation service, online doctor review, sentiment score, text mining

Citation

Extent

10

Format

Geographic Location

Time Period

Related To

Proceedings of the 56th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.