The Perils of Using Social Media Data to Predict the Spread of Diseases
Files
Date
2019-01-08
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
The data produced by social media engagement is of interest to various organizations and has been used in different applications like marketing, finance and healthcare. Though the potential of mining this data is high, standard data mining processes do not address the peculiarities of social media data. In this paper, we explore the perils of using social media data in predicting the spread of an infectious disease; perils that are mostly related to data quality, textual analysis and location information. We synthesize findings from a literature review and a data mining exercise to develop an adapted data mining process. This process has been designed to minimize the effects of the perils identified and is thus more aligned with the requirements of predicting disease spread using social media data. The process should be useful to data miners and health institutions
Description
Keywords
IT Adoption, Diffusion and Evaluation in Healthcare, Information Technology in Healthcare, Social media, disease spread, machine learning, data analytics, perils
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 52nd Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.