Towards Hardware-Based Application Fingerprinting with Microarchitectural Signals for Zero Trust Environments
Files
Date
2023-01-03
Authors
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
6613
Ending Page
Alternative Title
Abstract
The interactions between software and hardware are increasingly important to computer system security. This research collects sequences of microprocessor control signals to develop machine learning models that identify software tasks. The proposed approach considers software task identification in hardware as a general problem with attacks treated as a subset of software tasks. Two lines of effort are presented. First, a data collection approach is described to extract sequences of control signals labeled by task identity during real (i.e., non-simulated) system operation. Second, experimental design is used to select hardware and software configuration to train and evaluate machine learning models. The machine learning models significantly outperform a Naive classifier based on Euclidean distances from class means. Various configurations produce balanced accuracy scores between 26.08% and 96.89%.
Description
Keywords
Cyber Operations, Defense, and Forensics, cache attack, constant monitoring, machine learning, microarchitectural data, zero trust
Citation
Extent
10
Format
Geographic Location
Time Period
Related To
Proceedings of the 56th Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Collections
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.