Towards Hardware-Based Application Fingerprinting with Microarchitectural Signals for Zero Trust Environments

Date

2023-01-03

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

6613

Ending Page

Alternative Title

Abstract

The interactions between software and hardware are increasingly important to computer system security. This research collects sequences of microprocessor control signals to develop machine learning models that identify software tasks. The proposed approach considers software task identification in hardware as a general problem with attacks treated as a subset of software tasks. Two lines of effort are presented. First, a data collection approach is described to extract sequences of control signals labeled by task identity during real (i.e., non-simulated) system operation. Second, experimental design is used to select hardware and software configuration to train and evaluate machine learning models. The machine learning models significantly outperform a Naive classifier based on Euclidean distances from class means. Various configurations produce balanced accuracy scores between 26.08% and 96.89%.

Description

Keywords

Cyber Operations, Defense, and Forensics, cache attack, constant monitoring, machine learning, microarchitectural data, zero trust

Citation

Extent

10

Format

Geographic Location

Time Period

Related To

Proceedings of the 56th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.