Kernel-Segregated Transpose Convolution Operation
Files
Date
2023-01-03
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
6934
Ending Page
Alternative Title
Abstract
Transpose convolution has shown prominence in many deep learning applications. However, transpose convolution layers are computationally intensive due to the increased feature map size due to adding zeros after each element in each row and column. Thus, convolution operation on the expanded input feature map leads to poor utilization of hardware resources. The main reason for unnecessary multiplication operations is zeros at predefined positions in the input feature map. We propose an algorithmic-level optimization technique for the effective transpose convolution implementation to solve these problems. Based on kernel activations, we segregated the original kernel into four sub-kernels. This scheme could reduce memory requirements and unnecessary multiplications. Our proposed method was 3.09(3.02)× faster computation using the Titan X GPU (Intel Dual Core CPU) with a flower dataset from the Kaggle website. Furthermore, the proposed optimization method can be generalized to existing devices without additional hardware requirements. A simple deep learning model containing one transpose convolution layer was used to evaluate the optimization method. It showed 2.2× faster training using the MNIST dataset with an Intel Dual-core CPU than the conventional implementation.
Description
Keywords
Software Development for Mobile Devices, the Internet-of-Things, and Cyber-Physical Systems, convolution, generative adversarial networks, kernel segregation, transpose convolution, upsampling layer
Citation
Extent
10
Format
Geographic Location
Time Period
Related To
Proceedings of the 56th Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.