Do People Recover from Algorithm Aversion? An Experimental Study of Algorithm Aversion over Time

Date

2023-01-03

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

4016

Ending Page

Alternative Title

Abstract

Optimal decision making requires appropriate evaluation of advice. Recent literature reports that algorithm aversion reduces the effectiveness of predictive algorithms. However, it remains unclear how people recover from bad advice given by an otherwise good advisor. Previous work has focused on algorithm aversion at a single time point. We extend this work by examining successive decisions in a time series forecasting task using an online between-subjects experiment (N = 87). Our empirical results do not confirm algorithm aversion immediately after bad advice. The estimated effect suggests an increasing algorithm appreciation over time. Our work extends the current knowledge on algorithm aversion with insights into how weight on advice is adjusted over consecutive tasks. Since most forecasting tasks are not one-off decisions, this also has implications for practitioners.

Description

Keywords

Human-centricity in a Sustainable Digital Economy, advice taking, algorithm aversion, decision making, forecasting, time series

Citation

Extent

10

Format

Geographic Location

Time Period

Related To

Proceedings of the 56th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.