Towards Optimal Free Trade Agreement Utilization through Deep Learning Techniques

Date

2020-01-07

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

In recent years, deep learning based methods achieved new state of the art in various domains such as image recognition, speech recognition and natural language processing. However, in the context of tax and customs, the amount of existing applications of artificial intelligence and more specifically deep learning is limited. In this paper, we investigate the potentials of deep learning techniques to improve the Free Trade Agreement (FTA) utilization of trade transactions. We show that supervised learning models can be trained to decide on the basis of transaction characteristics such as import country, export country, product type, etc. whether FTA can be utilized. We apply a specific architecture with multiple embeddings to efficiently capture the dynamics of tabular data. The experiments were evaluated on real-world data generated by Enterprise Resource Planning (ERP) systems of an international chemical and consumer goods company.

Description

Keywords

Machine Learning and Predictive Analytics in Accounting, Finance and Management, deep learning, free trade utilization, optimization

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 53rd Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.