High-performance Diagnosis of Sleep Disorders: A Novel, Accurate and Fast Machine Learning Approach Using Electroencephalographic Data

Date

2020-01-07

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

While diagnosing sleep disorders by physicians using electroencephalographic data is protracted and inaccurate, we report promising results from a novel, fast and reliable machine learning approach. Our approach only needs an electroencephalographic recording snippet of 10 minutes instead of eight hours to correctly classify the disorder with an accuracy of over 90 percent. The Rapid Eye Movement sleep behavior disorder can lead to secondary diseases like Parkinson or Dementia. Therefore, it is important to classify the disorder fast and with a high level of accuracy - which is now possible with our approach.

Description

Keywords

Big Data on Healthcare Application

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 53rd Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.