Dynamics-aware Continuous-time Economic Dispatch: A Solution for Optimal Frequency Regulation
Files
Date
2020-01-07
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
This paper outlines a continuous-time economic dispatch (CTED) problem that intrinsically embeds dynamic constraints arising from the electromechanical behavior of synchronous generators and enables near-to-real-time optimal scheduling of generation. In its original form, the CTED problem is infinite-dimensional, however, we present a linear-programming reformulation that offers computational burden comparable to traditional economic dispatch. The resulting optimal dispatch trajectories are continuously differentiable and induce only small-signal variations in automatic generation control signals. In addition to yielding better system frequency response, this improves economic efficiency since the dispatch cost is better aligned with the actual cost of operating the system. We demonstrate the economic advantages and dynamic-performance improvements of the proposed method with time-domain simulations for a detailed differential algebraic equation model of an illustrative power network.
Description
Keywords
Resilient Networks, automatic generation control, continuous-time optimization, economic dispatch, frequency regulation, linear programming
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 53rd Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Collections
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.