How much randomness is needed for statistics?

Date

2012-11-05

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

In algorithmic randomness, when one wants to define a randomness notion with respect to some non-computable measure λ, a choice needs to be made. One approach is to allow randomness tests to access the measure λ as an oracle (which we call the \classical approach"). The other approach is the opposite one, where the randomness tests are completely effective and do not have access to the information contained in λ (we call this approach \Hippocratic"). While the Hippocratic approach is in general much more restrictive, there are cases where the two coincide. The first author showed in 2010 that in the particular case where the notion of randomness considered is Martin-Löf randomness and the measure λ is a Bernoulli measure, classical randomness and Hippocratic randomness coincide. In this paper, we prove that this result no longer holds for other notions of randomness, namely computable randomness and stochasticity.

Description

Keywords

Hippocratic randomness, martingales, Bernoulli measures

Citation

Extent

17

Format

Geographic Location

Time Period

Related To

Related To (URI)

Table of Contents

Rights

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.