Multi-subcarrier Physical Layer Authentication Using Channel State Information and Deep Learning

Date
2021-01-05
Authors
St. Germain, Ken
Kragh, Frank
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
7036
Ending Page
Alternative Title
Abstract
Strong authentication is crucial as wireless networks become more widespread and relied upon. The robust physical layer features produced by advanced communication networks lend themselves to accomplishing physical layer authentication by using channel state information (CSI). The use of deep learning with neural networks is well suited for classification tasks and can further the goal of enhancing physical layer security. To that end, we propose a semi-supervised generative adversarial network to differentiate between legitimate and malicious transmitters and accurately identify devices for authentication across a range of signal to noise ratio conditions. Our system leverages multiple input multiple output CSI across orthogonal frequency division multiplexing subcarriers using a small percentage of labeled training data.
Description
Keywords
Cyber Systems: Their Science, Engineering, and Security, authentication, csi, deep learning, gan, mimo
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 54th Hawaii International Conference on System Sciences
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.