CDMF: A Deep Learning Model based on Convolutional and Dense-layer Matrix Factorization for Context-Aware Recommendation

Date

2019-01-08

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

We proposes a novel deep neural network based recommendation model named Convolutional and Dense-layer Matrix Factorization (CDMF) for Context-aware recommendation, which is to combine multi-source information from item description and tag information. CDMF adopts a convolution neural network to extract hidden feature from item description as document and then fuses it with tag information via a full connection layer, thus generates a comprehensive feature vector. Based on the matrix factorization method, CDMF makes rating prediction based on the fused information of both users and items. Experiments on a real dataset show that the proposed deep learning model obviously outperforms the state-of-art recommendation methods.

Description

Keywords

Data, Text, and Web Mining for Business Analytics, Decision Analytics, Mobile Services, and Service Science, Context-aware Recommendation, Convolutional Neural Network, Deep Learning, Information Fusion, Tags

Citation

Extent

8 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 52nd Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.