Revisiting Review Depth in Search for Helpful Online Reviews
Files
Date
2023-01-03
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
2200
Ending Page
Alternative Title
Abstract
This study investigates online review features that constitute review depth and assess their impacts on review helpfulness. It develops a model capturing the moderating effects of heuristic and systematic cues of an online review on the relationship between review length and its helpfulness. In particular, this study examines the moderating effects of price, product type, review readability and the presence of two-sided arguments. For testing the model, a dataset of 568,454 reviews from 256,059 different reviewers on Amazon.com were analyzed. The variables were operationalized using test processing techniques and relationships were empirically tested using regression and machine learning models. The results highlight significant moderating effects of review readability and the presence of two-sided arguments on the relationship between review length and its helpfulness. However, the results did not confirm the moderating effects of price and product type. This article discusses the significant implications for a better understanding of review depth and helpfulness in e-commerce platforms.
Description
Keywords
Data Analytics, Data Mining, and Machine Learning for Social Media, consumer decision-making, readability, review depth, review helpfulness, two-sided argument
Citation
Extent
10
Format
Geographic Location
Time Period
Related To
Proceedings of the 56th Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.