Software Technology to Develop Large-Scale Self-Adaptive Systems: Accelerating Agent-Based Models and Fuzzy Cognitive Maps via CUDA
Files
Date
2023-01-03
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
6863
Ending Page
Alternative Title
Abstract
Agent-Based Models (ABMs) have long served to study self-adaptive systems and the emergence of population-wide patterns from simple rules applied to individuals. Recently, the rules for each agent have been expressed using a Fuzzy Cognitive Map (FCM), which is elicited from a subject-matter expert. This provides a transparent and participatory process to externalize the `mental model' of an expert and directly embed it into agents. However, software technology has been lacking to support such hybrid ABM/FCM models at scale, which has drastically limited the scope of applications and the ability of researchers to study emergent phenomena over large populations. In this paper, we designed and implemented the first open-source library that automatically accelerates ABM/FCM models by leveraging the CUDA cores available in a Graphical Processing Unit. We demonstrate the correctness and scaling of our library on a case study as well as across different networks representing agent interactions.
Description
Keywords
Self-Adaptive Systems and Applications, acceleration agent-based model, fuzzy cognitive map, parallelism, self-adaptive systems
Citation
Extent
10
Format
Geographic Location
Time Period
Related To
Proceedings of the 56th Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Collections
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.