Understanding Customer Preferences Using Image Classification – A Case Study

Date

2020-01-07

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

Today, companies have a large amount of data at their disposal. In addition to classic data in text or table form, the number of images also increases enormously. This is particularly the case if the customer contact exists via the Internet, e.g., social networks, blogs or forums. If these images can be evaluated, they lead to a better understanding of the customer. Improved recommendations can be made and customer satisfaction can be increased. This paper shows by means of support vector machines (SVM), convolutional neural networks (CNN) and cluster analyses how it is possible for companies to evaluate image data on their own and thus to understand and classify the customer. The data of travel platform users serve as a case study. Advantages and disadvantages of, as well as prerequisites for SVMs and CNNs are pointed out and segmentation of the users on the basis of their images is made.

Description

Keywords

Big Data and Analytics: Pathways to Maturity, convolztional neural network, image classification, suport vector machines, travel

Citation

Extent

11 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 53rd Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.